probability practice question 1
Consider a group of 600 students, of which 400 are female and 200 are MALE. Out of these, 100 have failed in the exam, and of these 100, 40 are MALE, F for female, x for failed, x' for not failed, and F' for MALE.
F: 400
F': 200
x: 100
x': 500
create a table to show this
Gender | Failed (x) | Not Failed (x') | Total
---------------------------------------
Female F | 40 | 360 | 400
---------------------------------------
Not Female F' | 60 | 140 | 200
---------------------------------------
Total | 100 | 500 | 600
find probability of all intersections, union and conditionals
P(F): 400/600 = 2/3
P(F'): 200/600 = 1/3
P(x): 100/600 = 1/6
P(x'): 500/600 = 5/6
Intersections
P(F ∩ x): 40/600 = 0.067
P(F' ∩ x): 60/600 = 0.1
P(F ∩ x'): 360/600 = 0.6
P(F' ∩ x'): 140/600 = 0.233
Union
P(F ∪ x) = P(F) + P(x) - P(F ∩ x)
P(F ∪ x) = 400/600 + 100/600 - 40/600 = 0.7666
P(F' ∪ x): P(F') + P(x) - P(F' ∩ x) P(F' ∪ x) = 200/600 + 100/600 - 60/600 = 0.400
P(F ∪ x'): P(F) + P(x') - P(F ∩ x')
P(F ∪ x') = 400/600 + 500/600 - 360/600 = 0.900
P(F' ∪ x'): P(F') + P(x') - P(F' ∩ x')
P(F' ∪ x') = 200/600 + 500/600 - 140/600 = 0.9333
Conditionals
P(F | x): P(F ∩ x) / P(x)
P(F | x) = 40/100 = 0.4000
P(F' | x): P(F' ∩ x) / P(x)
P(F' | x) = 60/100 = 0.6000
P(F|x'): P(F ∩ x') / P(x')
P(F|x') = 360/500 = 0.7200
P(F'|x'): P(F' ∩ x') / P(x')
P(F'|x') = 140/500 = 0.2800
P(x | F): P(F ∩ x) / P(F)
P(x | F) = 40/400 = 0.1000
P(x' | F): P(F ∩ x') / P(F)
P(x' | F) = 360/400 = 0.9000
P(x | F'): P(F' ∩ x) / P(F')
P(x | F') = 60/200 = 0.3000
P(x' | F'): P(F' ∩ x') / P(F')
P(x' | F') = 140/200 = 0.7000
Comments
Post a Comment